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If only the small disturbances about the steady-state
equilibrium condition are considered, then

a = as, + o (4a)
B =48 (4b)
o= dop (4c)

Linearizing Eqs. (1-3) about the equilibrium condition s
yields

(M,/I)p = 30°R, cosass sina, (5a)
d& + 30°R, da(cosas — sinas) = 0 (5b)

88 — 8B(R-H* + 3R.0° cos’ass) — 6¢(1 + R.)6 +
300R, 02 sina,, cosa., = 0 (5¢)

8¢ + E(R.0? + 3R.6? sin®a,,) + 88(1 — R,)6 —
3008R.6? sina,, cosas, = 0 (5d)

In the absence of a disturbing torque, R, and R, are nor-
mally positive and R. negative for stable behavior.f Thus

I,>I.>1, (6)

When a disturbing torque is present, the pitch response
essentially is unaltered if o is small. However, Eqgs. (5¢)
and (5d) now have a d¢ and a §3 term, respectively, if o, is
different from zero. The characteristic equation for the
coupled roll-yaw motion is

M+ N1 + 3R, sin?o,: — 3R, coso, — R.R.) —
3N® sina,, cosass(Rs + R.) — 4R.R.6* = 0 (7)
If @, 1s small, the four roots are, approximately,
M = fl—a + BO)e +
[1.50(R. + R.)/(b)"?] sinev,s  (Sa)

Ne = —0l—a + 3B +
[1.50(R. + R.)/ (b)) sina,

A = 9[—(1 — %(5)1/2]1/2 —
[1.50(R, + R.)/(6)V?] sina.. (8b)

M= _0‘[__(1 _ %(b)llz]lﬂ —
1.50(R, + R.)/(b)"?] sino,,

where

a
b

(3)(1 — 3R. — R.R.)
(1 — 3R. — R.R.)* + 16 R.R,

(]|

For the moment-of-inertia distribution given by Eq. (6),
M and A, are complex conjugates with negative real parts,
whereas A3 and s are conjugates with positive real parts.t
Thus the roll-yaw motion is unstable. If the sum of B, and
R. is zero, the real parts of Eqs. (8a) and (8b) are zero, but
the pitch restoring torque also is zero! Digital solutions of
the nonlinear differential equations have verified this in-
stability.

A disturbing torque that causes a steady-state value of 8
also is possible. In this case the three perturbation equa-
tions are coupled, and the characteristic equation is of the
sixth degree. For small values of B, the roots do not
have any positive real parts and the solutions are stable.
However, the digital solutions of the nonlinear equations
diverged for values of 8., greater than about 10°.

An examination of Eq. (3a) indicates that a constant
torque about the x axis requires that at least two of the three

T Another conditionally stable configuration is discussed in
Ref. 2. )

1 This assumes ags to be positive.
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orientation angles have steady-state values. This case has
not been examined extensively, but a limited number of
digital solutions were stable for small values of (M,)p.

The fact that a bias angle in pitch leads to instability in the
roll-yaw motion indicates the highly nonlinear nature of the
problem. A similar roll-yaw behavior is caused by the
foreed pitch motion due to orbital eccentricity.s Thus it is
apparent that the principle of superposition is of limited
use in stability analyses of gravity-gradient stabilized
satellites.
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Entropy Perturbations in
One-Dimensional Magnetohydrody-

namic Flow

Roy M. GUNDERSEN*

1linois Institute of Technology, Chicago, I11.

N a method developed by Germain and the author!—2 for
discussing weakly nonisentropic one-dimensional flows
of an ideal compressible fluid, it was found that the addition
of an entropy perturbation introduced a nonhomogeneous
term in an otherwise homogeneous system of perturbation
equations, and, further, that the entropy perturbation could
be determined directly. Thus, the various problems con-
sidered could be solved by considering first the homogeneous
system (isentropic perturbed flow) and then adding particu-
lar solutions to the complete system (nonisentropic perturbed
flow). In two cases of interest, viz., an initially uniform or
centered simple-wave flow, it was found that the addition of
an entropy perturbation affected the sound speed but not the
particle velocity, i.e., there was a particular solution with the
particle-velocity perturbation equal to zero. A general dis-
cussion of this phenomenon, including necessary and suffi-
cient conditions for it to occur, was given in Refs. 2 and 3.
The forementioned perturbation theory has been extended
to one-dimensional hydromagnetic flow subjected to a trans-
verse magnetic field,*~7 and it was found that the addition
of an entropy perturbation did not affect the particle ve-
locity in an initially uniform flow. (This is a consequence
of the result that the nonisentropic perturbation of an
initially uniform flow must reduce to the solution of the cor-
responding problem in conventional gas dynamics in the
limit of vanishing magnetic field.)® But this result was not
obtained for an initially centered simple-wave flow.> It is
the purpose of the present paper to derive conditions for the
particle velocity to be unaffected by the addition of an en-
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tropy perturbation. A well-known consequence of the as-
sumption of infinite electrical conductivity is that the ratio
of magnetic induction and density is constant along each
particle path, and, for a constant-state or simple-wave flow,
this ratio is constant throughout the flow. Doubtless, there
exist other flows for which this ratio is constant, and it is with
these flows that the present paper is concerned. Then, the
results for the nonmagnetic case are contained as a special
case. Thus, it is assumed tacitly herein that the demsity
and magnetic induction are constantly proportional.

The one-dimensional unsteady motion of an ideal, inviscid,
perfectly conducting, compressible fluid, subjected to a trans-
verse magnetie field, i.e., the induction B = (0,0,B), is gov-
érned by the system of equations?

P = exp[(s — s*)/c.]p” (1)
Wy + uw: + [w2 + (v — 2)c?|u./20 = 0 (2)
Uy + Wy + 2030,/ [0+ (v — 2)¢?] =
¢*s:/v(y — Dew (3)
s+ us, = 0 4)

where, u, ¢, s, s¥*, P, p, b> = B*up, p, v, and w = [b? +
2|2 are, respectively, the particle velocity, local speed of
sound, specific entropy, specific entropy at some reference
state, pressure, density, square of the Alfvén speed, perme-
ability, ratio of specific heat at constant pressure ¢, and at
constant volume c,, and the true speed of sound, the limiting
case of a fast wave.

When the system of Eqs. (1-4) is linearized in the neigh-
borhood of a known isentropic flow, denoted by the subscript
zero, a system of linear equations for the terms of first order,
denoted by the subscript one, is obtained. For the problem
under consideration, it is equivalent to look for solutions of
this linear system with %, = 0. This gives

wis 4 Ui + (e + (v — 2)co?ontioz/2w0? = 0 (5)

[wo? + (v — 2)ce?] poco® Q’(\bn)
(v — Dwe? 2vc,

dyo = peldz — wuedt]

(wow1)z =

(6)

where ¥, = const defines the particle paths. Thus, the
problem is reduced to expressing the compatibility of Egs.
(5) and (6), and the conditions on the functions wue(z,t),
co(x,f), and wo(z,t) which allow this compatibility to be
determined.

The characteristics of Eq. (5) are

dt  dz dey

T w T e + (0 = el aluonn O

One first integral of Eq. (7) is ¢y = const. Since &y = wpisa
particular solution of (5), the following method of solution is
suggested. From Eq. (7),

Wot dt + Woz d$

Wt + UpWoz
dwo _
_{ [wo? + (v — 2)002]/2w0}u0x -
dw1
'—{ [wo? + (v — 2)002]/2w02}U0xw1

which gives the first integral w;/wy = const. Thus, the solu-
tion of Eq. (5) may be written as

w/wo = Fh) (8)

where F is an arbitrary function.
Since Eq. (5) is obtained from the continuity equation,
which is the same in the magnetic or nonmagnetic case, it

wmdt _ Woz dx _

Wt UgWoz
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follows that?

a/co = g(¥o) 9

where g is an arbitrary function.
From Eqgs. (8) and (9), it follows that

o _ w0 _ Flo) _ wnlw® + (v — 2)e’] (10)
o ¢ g coly — Dwe?
Thus, Eq. (6) may be written as
Q' (o) F ()
— 2 A\
(oen)s = aoto [ 2yc, g(¢o)] (D
Substituting (8) into (11) gived:
wos b Q'(xl/o)] _ F'(Y)
Poo N wo? [4’}’&,{] 2F (12)

Writing pp = este,2/(v—1 and absorbing the constant in the
arbitrary - functions, replacing wo./we = cor F(W0)/cogWo),
and taking the material derivative in Eq. (12), the following
condition is obtained:

= = - 28 D Tt (13)
Dt ce+D/=1 |~ 4e,F Dt | w2
Carrying out the indicated differentiation and replacing the
derivative cos¢ by its equivalent obtained by differentiating

the continuity equation with respect to x, there results the
condition o

e @Gy DT
¢’ (r=1 7 9y — DyeoF Dt | we?

(14)

For the nonmagnetic case, the right-hand side vanishes so
that the necessary and sufficient condition for the existence
of a particular solution w; = 0 is wese = 0, i.e., u(z,f) is a
linear funetion of z.

By carrying out the indicated differentiation in Eq. (14),
this condition may be written as

D Uozz C‘)OZ
Dt '-u—w é—02602/(7_1):| =0 (15)

Equation (15) may be put into the following form:

2 Ugzz _ (wo? — co?) _
T [ SO

Thus, one has the final result: the necessary and suffi-
cient condition for the existence of a particular solution %, =
0 in the magnetic case is that (uo, co, wo) satisfy Eq. (16).
It should be noted that uo., = 0 is a sufficient condition.

[
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Inversion Property of the Fundamental
Matrix in Trajectory Perturbation
Problems

Aran L. FrRIEDLANDER¥

NASA Lewis Research Center, Cleveland, Ohio

Systems described by ordinary linear differential
equations with time varying coefficients may be
analyzed conveniently using the concepts of state
variables and fundamental matrix. Characteris-
tically, the inverse of this matrix appears in the
state transition equation. An inversion property
of the fundamental matrix applicable to a class of
dynamic systems which includes as a member tra-
jectory perturbation problems is presented. This
property allows the inverse matrix to be obtained
by a simple rearrangement of eleinents of the
original matrix. When the matrix is of high
order, significant advantages accrue in both time
saving and numerical accuracy.

NCREASED emphasis has been given recently to the ap-

plication of linear perturbation techniques in studies of
trajectory and guidance problems.!™® The resulting per-
turbed equations of motion are given by a set of ordinary
linear differential equations with time-varying coefficients.
The solution of such a set can be facilitated greatly by the
concepts of ‘“‘state variables” and “fundamental matrices,”
where the state transition equations are expressed in terms
of these computable matrices. Characteristically, the in-
verse of the fundamental matrix appears in the equations.
It is recognized that inversion of high-order matrices can be
both time consuming and inaccurate even with the aid of
digital computers. Fortunately, in the case of perturbed
trajectories there exists an inversion property, which allows
the inverse to be obtained by a simple rearrangement of ele-
ments of the origin matrix. Such a property has been indi-
cated by McLean et al.? for the special case of coasting tra-
jectories. The purpose of the present paper is to extend the
inversion property to a class of dynamic systems which in-
cludes as a member trajectory motion influenced by an ac-
celeration forcing function (e.g., thrust acceleration) in addi-
tion to gravitational acceleration. Also, it is felt that the use-
fulness of the inversion property deserves wider attention.

State Equations and Fundamental Matrix

Consider a linear system described by a set of n first-order
differential equations. In vector and matrix notation

(ds/dt) — A@W)s@® = BOS®) M
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where s is an n-dimensional state vector, f is an m-dimensional
veetor of forcing inputs applied to the system, and A and B
are n X n and n X m coeflicient matrices, respectively.
The state is defined as a set of output variables from which
the entire future behavior of the system may be determined,
provided the future inputs to the system are known. As-
sume initialization of the problem at a fixed time #, with cor-
responding state s(f). In general two types of problems are
admitted: one where the region of interest lies between
fixed-time interval (f,, ¢/), and the other where a terminal ¢,
is not specified. In either case the solution of Eq. (1) may
be facilitated by introducing an n X n fundamental matrix
A(t), which satisfies the following equation:

(dA/dt) + ADA®) =0 2)

and is subject to an arbitrary boundary condition to be dis-
cussed presently. In the literature, Eq. (2) often has been
called the adjoint equation to Eq. (1), and A is the adjoint
matrix.

Premultiplying Eq. (1) by A, postmultiplying Eq. (2) by
s, and adding the two modified equations yields

(d/dt)(As) = ADOBOS®)

When this equation is integrated between the limits ¢ and
ts, the general state transition equation is

{7
sl = A= WAWs(t) + A~ f AOBOSO (3)

t1

Nonsingularity of A is assumed, and the superscript —1 de-
notes the matrix inverse operation. Several interpretations
of this equation are as follows:

1) Suppose the problem-definition does not specify a fixed
terminal time. A convenient choice of boundary condition
for Eq. (2) is A{le) = I (identity matrix). Letting &, =
and &, = t, Eq. (3) gives the general solution for s(f) in terms
of the initial state and the effect of f(t) over the interval
(to, t). If A, B, and f are assumed to be known functions of
time, Eq. (1) does not have to be solved repeatedly for differ-
ent values of the initial state.

2) Suppose a fixed terminal time ¢, is specified and the
terminal state is of primary interest. A convenient choice of
boundary condition is A(f;) = I, and A(f) is computed by
integrating Eq. (2) backwards in time. Letting ¢z = ¢; and
h = t, Eq. (3) gives the terminal state in terms of the in-
stantaneous state and the effect of f(t) over (¢, t/). If a de-
sired terminal state is specified and s(t) is measured, then
synthesis of a control function f(f) may proceed from the
terminal form of Eq. (3).

3) Consider a dynamic process that is to be controlled
repetitively based on sampled measurements of the time-
varying state. Assume that the measurements are con-
taminated by random mnoise, and assume that a statistical
filtering and prediction procedure is employed to improve
the state measurements. The deterministic prediction equa-
tion is given by Eq. (3) and may be operated on statistically.

The previous development indicates the requirement for
inverting the fundamental matrix. An inversion property,
which allows great simplification of this operation, is pre-
sented now for a special class of systems.

Inversion Property of the Fundamental Matrix

Consider a class of systems having the following restric-
tions: 1) the number of state variables is even; and 2) the
system coefficient matrix A4 can be partitioned into four
square submatrices, each of order n/2, such that the diagonal
submatrices are equal to the null matrix and the off-diagonalk
submatrices are symmetrical.

A common example of an even-ordered state vector is a set,
of output variables and their first derivatives. If a system



